Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy

dc.contributor.authorMaiuri, Margherita
dc.contributor.authorDelfino, Ines
dc.contributor.authorCerullo, Giulio
dc.contributor.authorManzoni, Cristian
dc.contributor.authorPelmenschikov, Vladimir
dc.contributor.authorGuo, Yisong
dc.contributor.authorWang, Hongxin
dc.contributor.authorGee, Leland B.
dc.contributor.authorDapper, Christie H.
dc.contributor.authorNewton, William E.
dc.contributor.authorCramer, Stephen P.
dc.date.accessioned2018-05-07T11:38:49Z
dc.date.available2018-05-07T11:38:49Z
dc.date.issued2015
dc.description.abstractWe have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~ 1.2 ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~ 84, 116, 189, and 226 cm− 1. Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226 cm− 1 band is assigned as a potential ‘promoting vibration’ in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group.en
dc.description.sponsorshipERC/ERC-2011-AdG/291198/STRATUSen
dc.identifier.issn0162-0134
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/7760
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6938
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othernitrogenaseen
dc.subject.otherfemtoseconden
dc.subject.otherpump-probeen
dc.subject.otherNRVSen
dc.subject.othernuclear resonance vibrational spectroscopen
dc.subject.otherproton transferen
dc.titleLow frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopyen
dc.title.subtitleObservation of a candidate promoting vibrationen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1016/j.jinorgbio.2015.07.005en
dcterms.bibliographicCitation.journaltitleJournal of Inorganic Biochemistryen
dcterms.bibliographicCitation.originalpublishernameElsevieren
dcterms.bibliographicCitation.originalpublisherplaceAmsterdamen
dcterms.bibliographicCitation.pageend135en
dcterms.bibliographicCitation.pagestart128en
dcterms.bibliographicCitation.volume153en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Theoretische Chemie - Quantenchemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Theoretische Chemie - Quantenchemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
1-s2.0-S0162013415300325-main.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections