Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties

dc.contributor.authorAyari, Sabrine
dc.contributor.authorQuick, Michael T.
dc.contributor.authorOwschimikow, Nina
dc.contributor.authorChristodoulou, Sotirios
dc.contributor.authorBertrand, Guillaume H. V.
dc.contributor.authorArtemyev, Mikhail
dc.contributor.authorMoreels, Iwan
dc.contributor.authorWoggon, Ulrike
dc.contributor.authorJaziri, Sihem
dc.contributor.authorAchtstein, Alexander W.
dc.date.accessioned2020-07-21T10:42:16Z
dc.date.available2020-07-21T10:42:16Z
dc.date.issued2020-06-22
dc.description.abstractWe present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.en
dc.description.sponsorshipEC/H2020/714876/EU/Photonics in Flatland: Band Structure Engineering of 2D Excitons in Fluorescent Colloidal Nanomaterials/PHOCONAen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel - 2020en
dc.identifier.eissn2040-3372
dc.identifier.issn2040-3364
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11521
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10405
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.othertrion binding energyen
dc.subject.otherlateral sizeen
dc.subject.otherexcitonen
dc.subject.othertrionen
dc.titleTuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion propertiesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/D0NR03170Den
dcterms.bibliographicCitation.journaltitleNanoscaleen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistry (RSC)en
dcterms.bibliographicCitation.originalpublisherplaceCambridgeen
dcterms.bibliographicCitation.pageend14458en
dcterms.bibliographicCitation.pagestart14448en
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Optik und Atomare Physik::FG Nichtlineare Optikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Nichtlineare Optikde
tub.affiliation.instituteInst. Optik und Atomare Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
d0nr03170d.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections