Thumbnail Image

Least squares residuals and minimal residual methods

Liesen, Jörg; Rozlozník, Miroslav; Strakoš, Zdeněk

We study Krylov subspace methods for solving unsymmetric linear algebraic systems that minimize the norm of the residual at each step (minimal residual (MR) methods). MR methods are often formulated in terms of a sequence of least squares (LS) problems of increasing dimension. We present several basic identities and bounds for the LS residual. These results are interesting in the general context of solving LS problems. When applied to MR methods, they show that the size of the MR residual is strongly related to the conditioning of different bases of the same Krylov subspace. Using different bases is useful in theory because relating convergence to the characteristics of different bases offers new insight into the behavior of MR methods. Different bases also lead to different implementations which are mathematically equivalent but can differ numerically. Our theoretical results are used for a finite precision analysis of implementations of the GMRES method [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--869]. We explain that the choice of the basis is fundamental for the numerical stability of the implementation. As demonstrated in the case of Simpler GMRES [H. F. Walker and L. Zhou, Numer. Linear Algebra Appl., 1 (1994), pp. 571--581], the best orthogonalization technique used for computing the basis does not compensate for the loss of accuracy due to an inappropriate choice of the basis. In particular, we prove that Simpler GMRES is inherently less numerically stable than the Classical GMRES implementation due to Saad and Schultz [SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856--869].
Published in: SIAM Journal on Scientific Computing, 10.1137/S1064827500377988, Society for Industrial and Applied Mathematics