Thumbnail Image

Calibration-free gaze interfaces based on linear smooth pursuit

Zeng, Zhe; Siebert, Felix Wilhelm; Venjakob, Antje Christine; Rötting, Matthias

Since smooth pursuit eye movements can be used without calibration in spontaneous gaze interaction, the intuitiveness of the gaze interface design has been a topic of great interest in the human-computer interaction field. However, since most related research focuses on curved smooth-pursuit trajectories, the design issues of linear trajectories are poorly understood. Hence, this study evaluated the user performance of gaze interfaces based on linear smooth pursuit eye movements. We conducted an experiment to investigate how the number of objects (6, 8, 10, 12, or 15) and object moving speed (7.73 ˚/s vs. 12.89 ˚/s) affect the user performance in a gaze-based interface. Results show that the number and speed of the displayed objects influence users’ performance with the interface. The number of objects significantly affected the correct and false detection rates when selecting objects in the display. Participants’ performance was highest on interfaces containing 6 and 8 objects and decreased for interfaces with 10, 12, and 15 objects. Detection rates and orientation error were significantly influenced by the moving speed of displayed objects. Faster moving speed (12.89 ˚/s) resulted in higher detection rates and smaller orientation error compared to slower moving speeds (7.73 ˚/s). Our findings can help to enable a calibration-free accessible interaction with gaze interfaces.
Published in: Journal of Eye Movement Research, 10.16910/jemr.13.1.3, Bern Open Publishing