Thumbnail Image

Stellar: Network Attack Mitigation using Advanced Blackholing

Dietzel, Christoph; Wichtlhuber, Matthias; Smaragdakis, Georgios; Feldmann, Anja

Network attacks, including Distributed Denial-of-Service (DDoS), continuously increase in terms of bandwidth along with damage (recent attacks exceed 1.7 Tbps) and have a devastating impact on the targeted companies/governments. Over the years, mitigation techniques, ranging from blackholing to policy-based filtering at routers, and on to traffic scrubbing, have been added to the network operator’s toolbox. Even though these mitigation techniques pro- vide some protection, they either yield severe collateral damage, e.g., dropping legitimate traffic (blackholing), are cost-intensive, or do not scale well for Tbps level attacks (ACL filltering, traffic scrubbing), or require cooperation and sharing of resources (Flowspec). In this paper, we propose Advanced Blackholing and its system realization Stellar. Advanced blackholing builds upon the scalability of blackholing while limiting collateral damage by increasing its granularity. Moreover, Stellar reduces the required level of cooperation to enhance mitigation effectiveness. We show that fine-grained blackholing can be realized, e.g., at a major IXP, by combining available hardware filters with novel signaling mechanisms. We evaluate the scalability and performance of Stellar at a large IXP that interconnects more than 800 networks, exchanges more than 6 Tbps tra c, and witnesses many network attacks every day. Our results show that network attacks, e.g., DDoS amplification attacks, can be successfully mitigated while the networks and services under attack continue to operate untroubled.
Published in: Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies - CoNEXT '18, Association for Computing Machinery (ACM)
  • © ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies - CoNEXT ’18, http://dx.doi.org/10.1145/3281411.3281413.