Chatterjee, KuntalDopfer, Otto2019-08-282019-08-282019-08-221089-5639https://depositonce.tu-berlin.de/handle/11303/9923http://dx.doi.org/10.14279/depositonce-8933The initial microhydration structures of the protonated pharmaceutical building block oxazole (Ox), H+Ox-Wn≤4, are determined by infrared photodissociation (IRPD) spectroscopy combined with quantum chemical dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ). Protonation of Ox, achieved by chemical ionization in a H2-containing plasma, occurs at the most basic N atom. The analysis of systematic shifts of the NH and OH stretch vibrations as a function of the cluster size provides a clear picture for the preferred cluster growth in H+Ox-Wn. For n = 1–3, the IRPD spectra are dominated by a single isomer, and microhydration of H+Ox with hydrophilic protic W ligands occurs by attachment of a hydrogen-bonded (H-bonded) Wn solvent cluster to the acidic NH group via an NH···O H-bond. Such H-bonded networks are stabilized by strong cooperativity effects. This is in contrast to previously studied hydrophobic ligands, which prefer interior ion solvation. The strength of the NH···O ionic H-bond increases with the degree of hydration because of the increasing proton affinity (PA) of the Wn cluster. At n = 4, proton-transferred structures of the type Ox-H+Wn become energetically competitive with H+Ox-Wn structures, because differences in solvation energies can compensate for the differences in the PAs, and barrierless proton transfer from H+Ox to the Wn solvent subcluster becomes feasible. Indeed, the IRPD spectrum of the n = 4 cluster is more complex suggesting the presence of more than one isomer, although it lacks unequivocal evidence for the predicted intracluster proton transfer.en541 Physikalische Chemieligandsstructural changearomatic moleculemicrohydratedclustersMicrohydration Structures of Protonated OxazoleArticle1520-5215