Brandt, ChristophHermann, FrankEhrig, HartmutEngel, Thomas2020-06-152020-06-1520101436-9915https://depositonce.tu-berlin.de/handle/11303/11355http://dx.doi.org/10.14279/depositonce-10242An analysis of today's situation at Credit Suisse has shown severe problems, because it is based on current best practices and ad-hoc modelling techniques to handle important aspects of security, risk and compliance. Based on this analysis we propose in this paper a new enterprise model which allows the construction, integration, transformation and evaluation of different organizational models in a big decentralized organization like Credit Suisse. The main idea of the new model framework is to provide small decentralized models and intra-model evaluation techniques to handle services, processes and rules separately for the business and IT universe on one hand and for human-centric and machine-centric concepts on the other hand. Furthermore, the new framework provides inter-modelling techniques based on algebraic graph transformation to establish the connection between different kinds of models and to allow integration of the decentralized models. In order to check for security, risk and compliance in a suitable way, our models and techniques are based on different kinds of formal methods. In this paper, we show that algebraic graph transformation techniques are useful not only for intra-modelling - using graph grammars for visual languages and graph constraints for requirements - but also for inter-modelling - using triple graph grammars for model transformation and integration. Altogether, we present the overall idea of our new model framework and show how to solve specific problems concerning intra- and inter-modelling as first steps. This should give evidence that our framework can also handle important other requirements for enterprise modelling in a big decentralized organization like Credit Suisse.en004 Datenverarbeitung; Informatikgraph transformationsecuritytriple graph grammargraph constraintsEnterprise Modelling using Algebraic Graph Transformation - Extended VersionResearch Paper