Karow, Michael2017-12-142017-12-142010-11-300895-4798https://depositonce.tu-berlin.de/handle/11303/7272http://dx.doi.org/10.14279/depositonce-6545Let $\lambda$ be a nonderogatory eigenvalue of $A\in\mathbb{C}^{n\times n}$ of algebraic multiplicity m. The sensitivity of $\lambda$ with respect to matrix perturbations of the form $A\leadsto A+\Delta$, $\Delta\in\boldsymbol{\Delta}$, is measured by the structured condition number $\kappa_{\boldsymbol{\Delta}}(A,\lambda)$. Here $\boldsymbol{\Delta}$ denotes the set of admissible perturbations. However, if $\boldsymbol{\Delta}$ is not a vector space over $\mathbb{C}$, then $\kappa_{\boldsymbol{\Delta}}(A,\lambda)$ provides only incomplete information about the mobility of $\lambda$ under small perturbations from $\boldsymbol{\Delta}$. The full information is then given by the set $K_{\boldsymbol{\Delta}}(x,y)=\{y^*\Delta x;$ $\Delta\in\boldsymbol{\Delta},$ $\|\Delta\|\leq1\}\subset\mathbb{C}$ that depends on $\boldsymbol{\Delta}$, a pair of normalized right and left eigenvectors $x,y$, and the norm $\|\cdot\|$ that measures the size of the perturbations. We always have $\kappa_{\boldsymbol{\Delta}}(A,\lambda)=\max\{|z|^{1/m};$ $z\in K_{\boldsymbol{\Delta}}(x,y)\}$. Furthermore, $K_{\boldsymbol{\Delta}}(x,y)$ determines the shape and growth of the $\boldsymbol{\Delta}$-structured pseudospectrum in a neighborhood of $\lambda$. In this paper we study the sets $K_{\boldsymbol{\Delta}}(x,y)$ and obtain methods for computing them. In doing so we obtain explicit formulae for structured eigenvalue condition numbers with respect to many important perturbation classes.en518 Numerische Analysis512 Algebraeigenvaluesstructured perturbationspseudospectracondition numbersStructured pseudospectra and the condition of a nonderogatory eigenvalueArticle1095-7162