Moving Dirichlet Boundary Conditions

dc.contributor.authorAltmann, Robert
dc.date.accessioned2021-12-17T10:11:31Z
dc.date.available2021-12-17T10:11:31Z
dc.date.issued2013-09-24
dc.description.abstractThis paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15784
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14557
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherDirichlet boundary conditionsen
dc.subject.otheroperator DAEen
dc.subject.otherinf-sup conditionen
dc.subject.otherwave equationen
dc.titleMoving Dirichlet Boundary Conditionsen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2013, 12en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200065J10 Equations with linear operatorsen
tub.subject.msc200065M60 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methodsen
tub.subject.msc200065M20 Method of linesen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Alt13ppt_MovingDir.pdf
Size:
387.95 KB
Format:
Adobe Portable Document Format
Description:
Collections