Controlling transient gas flow in real-world pipeline intersection areas

dc.contributor.authorHennings, Felix
dc.contributor.authorAnderson, Lovis
dc.contributor.authorHoppmann-Baum, Kai
dc.contributor.authorTurner, Mark
dc.contributor.authorKoch, Thorsten
dc.date.accessioned2021-03-15T11:14:27Z
dc.date.available2021-03-15T11:14:27Z
dc.date.issued2020-10-03
dc.description.abstractCompressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network, they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany’s largest transmission system operators to develop a decision support system for their dispatching center, we investigated how to automatize the control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed-integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real-world data, we demonstrate the performance of our approach.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.description.sponsorshipBMBF, 05M14ZAM, Forschungscampus Modal - Mathematical Optimization and Data Analysis Laboratories. Antrag auf die erste Hauptphase (Implementierung) des Forschungscampus Modalen
dc.identifier.eissn1573-2924
dc.identifier.issn1389-4420
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12831
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11631
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 Mathematiken
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitenen
dc.subject.othermixed-integer programmingen
dc.subject.otherrealistic modeling of compressor stationsen
dc.subject.othertransient gas network optimizationen
dc.subject.othertransient gas flowen
dc.subject.otherpipeline intersection areasen
dc.titleControlling transient gas flow in real-world pipeline intersection areasen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s11081-020-09559-yen
dcterms.bibliographicCitation.journaltitleOptimization and Engineeringen
dcterms.bibliographicCitation.originalpublishernameSpringerNatureen
dcterms.bibliographicCitation.originalpublisherplaceLondon [u.a.]en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematik::FG Software und Algorithmen für die diskrete Optimierungde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Software und Algorithmen für die diskrete Optimierungde
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Hennings_etal_Controlling_2020.pdf
Size:
3.24 MB
Format:
Adobe Portable Document Format

Collections