SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

dc.contributor.authorUnke, Oliver T.
dc.contributor.authorChmiela, Stefan
dc.contributor.authorGastegger, Michael
dc.contributor.authorSchütt, Kristof T.
dc.contributor.authorSauceda, Huziel E.
dc.contributor.authorMüller, Klaus-Robert
dc.date.accessioned2022-01-07T10:45:39Z
dc.date.available2022-01-07T10:45:39Z
dc.date.issued2021-12-14
dc.description.abstractMachine-learned force fields combine the accuracy of ab initio methods with the efficiency of conventional force fields. However, current machine-learned force fields typically ignore electronic degrees of freedom, such as the total charge or spin state, and assume chemical locality, which is problematic when molecules have inconsistent electronic states, or when nonlocal effects play a significant role. This work introduces SpookyNet, a deep neural network for constructing machine-learned force fields with explicit treatment of electronic degrees of freedom and nonlocality, modeled via self-attention in a transformer architecture. Chemically meaningful inductive biases and analytical corrections built into the network architecture allow it to properly model physical limits. SpookyNet improves upon the current state-of-the-art (or achieves similar performance) on popular quantum chemistry data sets. Notably, it is able to generalize across chemical and conformational space and can leverage the learned chemical insights, e.g. by predicting unknown spin states, thus helping to close a further important remaining gap for today’s machine learning models in quantum chemistry.en
dc.description.sponsorshipBMBF, 01IS14013A, Verbundprojekt: BBDC - Berliner Kompetenzzentrum für Big Dataen
dc.description.sponsorshipBMBF, 01GQ1115, D-JPN Verbund: Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebungenen
dc.description.sponsorshipBMBF, 01GQ0850, Verbundprojekt: Bernstein Fokus Neurotechnologie - Nichtinvasive Neurotechnologie für Mensch-Maschine Interaktion - Teilprojekte A1, A3, A4, B4, W3, Zentrumen
dc.description.sponsorshipBMBF, 01IS18025A, Verbundprojekt BIFOLD-BBDC: Berlin Institute for the Foundations of Learning and Dataen
dc.description.sponsorshipBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and Dataen
dc.description.sponsorshipDFG, 390685689, EXC 2046: MATH+: Berlin Mathematics Research Centeren
dc.identifier.eissn2041-1723
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16099
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14873
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc000 Informatik, Informationswissenschaft, allgemeine Werkede
dc.subject.otherchemical physicsen
dc.subject.othercheminformaticsen
dc.subject.othercomputational chemistryen
dc.subject.othermethod developmenten
dc.subject.otherquantum chemistryen
dc.titleSpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effectsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber7273en
dcterms.bibliographicCitation.doi10.1038/s41467-021-27504-0en
dcterms.bibliographicCitation.journaltitleNature Communicationsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 4 Elektrotechnik und Informatik::Inst. Softwaretechnik und Theoretische Informatik::FG Maschinelles Lernende
tub.affiliation.facultyFak. 4 Elektrotechnik und Informatikde
tub.affiliation.groupFG Maschinelles Lernende
tub.affiliation.instituteInst. Softwaretechnik und Theoretische Informatikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Unke_etal_SpookNet_2021.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections