Semiconductor nanostructures for flying q-bits and green photonics

dc.contributor.authorBimberg, Dieter
dc.date.accessioned2020-05-22T15:10:27Z
dc.date.available2020-05-22T15:10:27Z
dc.date.issued2018
dc.description.abstractBreakthroughs in nanomaterials and nanoscience enable the development of novel photonic devices and systems ranging from the automotive sector, quantum cryptography to metropolitan area and access networks. Geometrical architecture presents a design parameter of device properties. Self-organization at surfaces in strained heterostructures drives the formation of quantum dots (QDs). Embedding QDs in photonic and electronic devices enables novel functionalities, advanced energy efficient communication, cyber security, or lighting systems. The recombination of excitons shows twofold degeneracy and Lorentzian broadening. The superposition of millions of excitonic recombinations from QDs in real devices leads to a Gaussian envelope. The material gain of QDs in lasers is orders of magnitude larger than that of bulk material and decoupled from the index of refraction, controlled by the properties of the carrier reservoir, thus enabling independent gain and index modulation. The threshold current density of QD lasers is lowest of all injection lasers, is less sensitive to defect generation, and does not depend on temperature below 80°C. QD lasers are hardly sensitive to back reflections and exhibit no filamentation. The recombination from single QDs inserted in light emitting diodes with current confining oxide apertures shows polarized single photons. Emission of ps pulses and date rates of 1010+bit upon direct modulation benefits from gain recovery within femtoseconds. Repetition rates of several 100 GHz were demonstrated upon mode-locking. Passively mode-locked QD lasers generate hat-like frequency combs, enabling Terabit data transmission. QD-based semiconductor optical amplifiers enable multi-wavelength amplification and switching and support multiple modulation formats.en
dc.identifier.eissn2192-8614
dc.identifier.issn2192-8606
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11211
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10099
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 Physikde
dc.subject.otherquantum dot growth and electronic propertiesen
dc.subject.otherquantum dot lasersen
dc.subject.otherultra-fast lasers and amplifiersen
dc.subject.othersingle q-bit emittersen
dc.titleSemiconductor nanostructures for flying q-bits and green photonicsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1515/nanoph-2018-0021
dcterms.bibliographicCitation.issue7
dcterms.bibliographicCitation.journaltitleNanophotonicsen
dcterms.bibliographicCitation.originalpublishernameDe Gruyteren
dcterms.bibliographicCitation.originalpublisherplaceBerlinen
dcterms.bibliographicCitation.pageend1257
dcterms.bibliographicCitation.pagestart1245
dcterms.bibliographicCitation.volume7
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
bimberg_2018.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

Collections