Physicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrines

dc.contributor.authorWaajen, Annemiek C.
dc.contributor.authorHeinz, Jacob
dc.contributor.authorAiro, Alessandro
dc.contributor.authorSchulze-Makuch, Dirk
dc.date.accessioned2020-08-28T13:47:12Z
dc.date.available2020-08-28T13:47:12Z
dc.date.issued2020-07-07
dc.date.updated2020-07-08T03:11:44Z
dc.description.abstractMicroorganisms living in sub-zero environments can benefit from the presence of dissolved salts, as they significantly increase the temperature range of liquid water by lowering the freezing point. However, high concentrations of salts can reduce microbial growth and survival, and can evoke a physiological stress response. It remains poorly understood how the physicochemical parameters of brines (e.g. water activity, ionic strength, solubility and hydration shell strength between the ions and the surrounding water molecules) influence the survival of microorganisms. We used the cryo− and halotolerant bacterial strain Planococcus halocryophilus as a model organism to evaluate the degree of stress different salts assert. Cells were incubated in liquid media at −15°C containing single salts at eutectic concentrations (CaCl2, LiCl, LiI, MgBr2, MgCl2, NaBr, NaCl, NaClO4 and NaI). Four of these salts (LiCl, LiI, MgBr2 and NaClO4) were also investigated at concentrations with a low water activity (0.635) and, separately, with a high ionic strength (8 mol/L). Water activity of all solutions was measured at −15°C. This is the first time that water activity has been measured for such a large number of liquid salt solutions at constant sub-zero temperatures (−15°C). Colony-Forming Unit (CFU) counts show that the survival of P. halocryophilus has a negative correlation with the salt concentration, molecular weight of the anion and anion radius; and a positive correlation with the water activity and anions’ hydration shell strength. The survival of P. halocryophilus did not show a significant correlation with the ionic strength, the molecular weight of the cation, the hydrated and unhydrated cation and hydrated anion radius, and the cations’ hydration bond length. Thus, the water activity, salt concentration and anion parameters play the largest role in the survival of P. halocryophilus in concentrated brines. These findings improve our understanding of the limitations of microbial life in saline environments, which provides a basis for better evaluation of the habitability of extraterrestrial environments such as Martian cryobrines.en
dc.description.sponsorshipEC/FP7/339231/EU/Habitability of Martian Environments: Exploring the Physiological and Environmental Limits of Life/HOMEen
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlinen
dc.identifier.eissn1664-302X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11619
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10506
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.otherPlanococcus halocryophilusen
dc.subject.othersalt stressen
dc.subject.otherwater activityen
dc.subject.otherionic strengthen
dc.subject.othersurvivalen
dc.titlePhysicochemical Salt Solution Parameters Limit the Survival of Planococcus halocryophilus in Martian Cryobrinesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber1284en
dcterms.bibliographicCitation.doi10.3389/fmicb.2020.01284en
dcterms.bibliographicCitation.journaltitleFrontiers in Microbiologyen
dcterms.bibliographicCitation.originalpublishernameFrontiers Media S.A.en
dcterms.bibliographicCitation.originalpublisherplaceLausanneen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Zentrum für Astronomie und Astrophysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteZentrum für Astronomie und Astrophysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 9 of 9
Loading…
Thumbnail Image
Name:
fmicb-11-01284.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Data_Sheet_1.docx
Size:
1.65 MB
Format:
Microsoft Word XML
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g001.tif
Size:
1.19 MB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g002.tif
Size:
956.35 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g003.tif
Size:
916.05 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g004.tif
Size:
980.41 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g005.tif
Size:
930.04 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g006.tif
Size:
951.77 KB
Format:
Tag Image File Format
Loading…
Thumbnail Image
Name:
fmicb-11-01284-g007.tif
Size:
1.72 MB
Format:
Tag Image File Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections