Effect of an azimuthal mean flow on the structure and stability of thermoacoustic modes in an annular combustor model with electroacoustic feedback

dc.contributor.authorHumbert, Sylvain C.
dc.contributor.authorMoeck, Jonas P.
dc.contributor.authorOrchini, Alessandro
dc.contributor.authorPaschereit, Christian Oliver
dc.date.accessioned2022-05-23T13:04:53Z
dc.date.available2022-05-23T13:04:53Z
dc.date.issued2021-01-11
dc.descriptionCopyright © 2020 ASMEen
dc.description.abstractThermoacoustic oscillations in axisymmetric annular combustors are generally coupled by degenerate azimuthal modes, which can be of standing or spinning nature. Symmetry breaking due to the presence of a mean azimuthal flow splits the degenerate thermoacoustic eigenvalues, resulting in pairs of counter-spinning modes with close but distinct frequencies and growth rates. In the present study, experiments have been performed using an annular system where the thermoacoustic feedback due to the flames is mimicked by twelve identical electroacoustic feedback loops. The mean azimuthal flow is generated by fans. We investigate the standing/spinning nature of the oscillations as a function of the azimuthal Mach number for two types of initial states, and how the stability of the system is affected by the mean azimuthal flow. It is found that spinning, standing or mixed modes can be encountered at very low Mach number, but increas ing the mean velocity promotes one spinning direction. At sufficiently high Mach number, only spinning modes are observed in the limit cycle oscillations. In some cases, the initial conditions have a significant impact on the final state of the system. It is found that the presence of a mean azimuthal flow increases the acoustic damping. This has a beneficial effect on stability: it often reduces the amplitude of the self-sustained oscillations, and can even suppress them in some cases. However, we observe that the suppression of a mode due to the mean flow may destabilize another one. We discuss our findings in relation with an existing low-order modelen
dc.description.sponsorshipEC/H2020/765998/EU/Annular Instabilities and Transient Phenomena in Gas Turbine Combustors/ANNULIGhTen
dc.identifier.isbn978-0-7918-8413-3
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16967
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15746
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherthermoacoustic oscillationsen
dc.subject.otherelectroacoustic feedbacken
dc.subject.otherannular combustoren
dc.subject.otherazimuthal mean flowen
dc.subject.otheracoustic dampingen
dc.titleEffect of an azimuthal mean flow on the structure and stability of thermoacoustic modes in an annular combustor model with electroacoustic feedbacken
dc.typeConference Objecten
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1115/GT2020-16091en
dcterms.bibliographicCitation.originalpublishernameASMEen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.proceedingstitleASME Turbo Expo 2020: Turbomachinery Technical Conference and Expositionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Strömungsmechanik und Technische Akustik (ISTA)::FG Experimentelle Strömungsmechanikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Experimentelle Strömungsmechanikde
tub.affiliation.instituteInst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Humbert_etal_Effect_2021.pdf
Size:
560.91 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections