Thumbnail Image

Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles

Gummel, Jérémie; Sztucki, Michael; Narayanan, Theyencheri; Gradzielski, Michael

We report on the structural dynamics underlying the formation of unilamellar vesicles upon mixing dilute solutions of anionic and zwitterionic surfactant solutions. The spontaneous self-assembly was initiated by rapid mixing of the surfactant solutions using a stopped-flow device and the transient intermediate structures were probed by time-resolved small-angle X-ray scattering. The initial surfactant solutions comprised of anionic lithium perfluorooctanoate and zwitterionic tetradecyldimethylamine oxide, where the mixtures form unilamellar vesicles over a wide range of concentrations and mixing ratios. We found that disk-like transient intermediate structures are formed at higher concentrations while more elongated forms such as cylinder-like and torus-like micelles are involved at lower concentrations. These differences are attributed to monomer addition mechanism dominating the self-assembly process when the initial concentration is well below the critical micellar concentration of the anionic surfactant, while at higher concentrations the process is governed by fusion of disk-like mixed micelles. This means that the pathway of vesicle formation is determined by the proximity to the critical micellar concentration of the more soluble component.
Published in: Soft matter, 10.1039/c1sm05354j, Royal Society of Chemistry
  • Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
  • This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.