Thumbnail Image

Defect topologies in chiral liquid crystals confined to mesoscopic channels

Schlotthauer, Sergej; Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin

FG Theoretische Chemie

We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.
  • This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Chem. Phys. 142, 194704 (2015) and may be found at https://doi.org/10.1063/1.4920979.